Sunday, January 5, 2020

How to check Java and Java home on Macs

To understand which Java you have
  • Open Terminal.
  • First confirm you have JDK by typing “which java”. It should show something like /usr/bin/java.
  • Check you have the needed version of Java, by typing “java -version”. 
  • If you do not have Java JDK, install it. Please the Java Development Kit. Not the Java Runtime Environment (JRE). To get use either the adoptJDK site or the Zulu site. For the present GEOframe system, the JDK 8 is necessary (Geotools do not work with Java 9 or more). Reasons why Oracle sites are not preferable are well documented here.
To set Java Home

  • JAVA_HOME is essentially the full path of the directory that contains a sub-directory named bin which in turn contains the java.
  • For knowing where it is, at the terminal prompt issue the command: %/usr/libexec/java_home -V
  • If you installed the adoptJDK, your directory should be something — /Library/Java/JavaVirtualMachines/adoptopenjdk-8.jdk/Contents/Home

Setting JAVA_HOME for use of Java from Terminal

  • Set JAVA_HOME using this command in Terminal:  export JAVA_HOME=/Library/Java/JavaVirtualMachines/adoptopenjdk-8.jdk/Contents/Home
  • Finally issue: echo $JAVA_HOME on Terminal to confirm the path
You should now be able to run your applications from the terminal

Monday, December 30, 2019

How to install the Object Modelling System Console on Windows 10

1) Download openJDK 8 LTS from

2) Install it

3) Open a command prompt and run the command:
java -version
It should return:
openjdk version "1.8.0_232"
OpenJDK Runtime Environment (AdoptOpenJDK)(build 1.8.0_232-b09)
OpenJDK 64-Bit Server VM (AdoptOpenJDK)(build 25.232-b09, mixed mode)

4) Download the Object Modeling System console version 3.6.28 from

5) Unzip the Object Modeling System console and run the console.bat file

6) In the console setting, select the panel Run and set the Java path (see screenshot) to the previously installed JDK which usually is:
C:\Program Files\AdoptOpenJDK\jdk-8.0.232.09-hotspot
(please check the correct JDK version first)


Wednesday, October 9, 2019

GEOframe Winter School 2020 - It is time to apply !

The second edition on the Winter School on GEOframe will be held between January 8 and 17, 2020 in Trento, Italy.  The course is devoted to Ph.D. Students, Post-docs, Young researchers (and Professionals!) interested in estimating all the components of the hydrological cycle (rainfall, evapotranspiration, snow-melting, and river discharge).  The system they will learn allows to work out very small catchments and continental basins as well (e.g. Abera et al., 2017a,b) up to build operational solutions as the one used in in Basilicata.

The aim of the course is to enable participants to run their own simulations and eventually on their own catchments and estimate the hydrological budget components.
With respect to the 2019 Winter School, there will be more practice and more detailed work on evapotranspiration and rainfall-runoff. It will be much more focused on exercises and on getting the water budget performed under various hypotheses on models' structure.


Website for the enrollment go here.

For the hole definitive material of the School go here

The provisional topics will be:

Teachers will be:

Prof. Riccardo Rigon, Ph.D.
Prof. Giuseppe Formetta, Ph.D.
Marialaura Bancheri, Ph.D.
Niccolò Tubini, Ph.D. student



The topics (links added after the School):

To have an idea of the topics, the interested researchers should give look at the material (slides, video etc. of the 2019 Winter School).  The material of the first three days remains very similar (but refined) to the old one. Therefore, for students is possible also to participate only to the second week (at the same cost, but saving some lodging) but, in that case, is mandatory to follow the on-line courses and tutorials  relative of 8-9-10 January topics and having done the exercises before December 15. We will offer prompt online support to them up to that date and no support whatsoever on the same topics later or  between 13-17 of January for clear reasons of course efficiency and organisation.  The refined material of the first three days will be available on the Winter School website  from November 15, 2019.

With respect to the 2019 School, there will be more practice and more detailed material on Evapotranspiration and Rainfall-Runoff. For every 40 minutes of talk there will be 70 minutes of supervised exercise for a total of 8 hour a day of activities. 

Cost of the School is 350 Euros for who will subscribe before November 15, 400 Euros for others. A discount of 20 Euros is granted to fellows of the Italian Hydrological Society (subscriptions for students are available at the IHS-SII site for 10 Euros to students and 20 to seniors). Who attended the last year school can participate free of charge, upon subscription. Inclusive of the costs will be coffee breaks and lunch at the Cafeteria of Department of Civil, and one social dinner for all the schoolmates Environmental and Mechanical Engineering. 

Website for the enrollment go here.

For any further information, please fill free to contact me at riccardo.rigon <at> unitn.it

Tuesday, February 19, 2019

Material for the GEOframe Winter School - Rainfall-Runoff

Here we are introducing some modules for rainfall runoff modelling present in GEOframe. Some of them where actually refined for the Civil Protection of the Basilicata Region.


Schedule

Exercises
  • The set of sim files and the Jupyter notebook are here
  • The Python script by Christian Massari to create automatically the required subfolders. It is here.
General references to Rainfall-Runoff

Beven, K. (2012), Ranfall Runoff, the primer, Wiley-Blackwell

Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2015). The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landforms, http://doi.org/10.1002/esp.3855

References besides the one already used

For seeing how to represent lumped hydrological models (you can give a look to this paper here)

Abera, W.W. (2016), Modelling water budget at a basin scale using JGrass-NewAge system. PhD thesis, University of Trento

Bancheri, Marialaura (2017) A flexible approach to the estimation of water budgets and its connection to the travel time theory. PhD thesis, University of Trento.

Formetta, Giuseppe (2013) Hydrological modelling with components: the OMS3 NewAge-JGrass system. PhD thesis, University of Trento.

Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open source framework, 55(C), 190–200. http://doi.org/10.1016/j.envsoft.2014.01.019

Patta, C, Costruzione di un modello idrologico di stima della disponibilitĂ  idrica in area pedemontana, Tesi di laurea (in Italian), Politecnico di Torino, 2018

For open questions about rainfall-runoff see also the Meledrio Posts.

Material for the GEOframe Winter School - Evaporation and Transpiration

Evapotranspiration accounts for most of fifty percent of the terrestrial hydrological cycle. We illustrate here some ways to estimate it with the tools offered by the GEOframe system

Out of schedule (for Chhay)
Exercises
References

Primarily for historic papers browse to the list by Dennis Baldocchi
See also the discussions here:

Material for the GEOframe Winter School - Radiation budget

After having spent time on preparatory topics, but before facing the hydrological processes, we need to cope with solar radiation. The topic was already treated in other posts. However not often in English.

Some very elementary slides about the sun:

Now some more complicate topics
Documentation of the components
Exercises illustrated by Jupyter notebooks by Michele Bottazzi
References

Corripio, J. G. (2002). Modelling the energy balance of high altitude glacierised basins in the Central Andes. Ph.D Dissertation, 1–175.

Corripio, J. G. (2003). Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain, 17(1), 1–23.

Formetta, G., Rigon, R., Chávez, J. L., & David O. (2013). Modeling shortwave solar radiation using the JGrass-NewAge system. Geoscientific Model Development, 6(4), 915–928. http://doi.org/10.5194/gmd-6-915-2013

Formetta, G., Bancheri, M., David, O., & Rigon, R. (2016). Performance of site-specific parameterizations of longwave radiation. Hydrology and Earth System Sciences, 20(11), 4641–4654. http://doi.org/10.5194/hess-20-4641-2016

Material for the GEOframe Winter School - Kriging interpolation

Third and fourth days of the Winter School on the GEOframe system about GEOframe are dedicated to interpolation by using Kriging and the use of Particle Swarm Calibrator.


References



For general information about spatial interpolation of hydrological quantities, please see also "Rainfall and Temperature interpolation", on this blog